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Abstract—In this paper we propose a tree-search algorithm
that provides the exact ML solution with lower computational
complexity than that required by an exhaustive minimum dis-
tance search. The new algorithm, that we call King Decoder, is
based on conditional dominance conditions, a set of sufficient
conditions for making optimal decisions regardless of multi-
antenna interference. The King Decoder does not require any
matrix inversion and/or factorization and can be employed in
both underdertermined and overdetermined systems. Complexity
performances of the proposed algorithm, obtained through nu-
merical simulations, are compared with those of the generalized
sphere decoder, showing a lower search complexity for a wide
range of SNR’s.

I. INTRODUCTION

Many communication systems can be described by a linear
model with additive noise. Examples are narrowband MIMO
(multiple-input multiple-output) multiantenna systems [1],
multiuser communication systems as in direct-sequence code-
division-multiple-access (DS-CDMA) [2] and multi-carrier
code-division-multiple-access (MC-CDMA) [3]. The mathe-
matical model is expressed as

y = Hx + n, (1)

where y ∈ CN is the observation, H ∈ CN×K is the channel
matrix with K inputs and N outputs, n ∈ CN is a random
vector with complex Gaussian distribution with zero mean and
variance 2σ2IN , i.e. n ∼ CN

(
0, 2σ2IN

)
, and x ∈ CK is the

input vector whose elements are drawn from a finite set of
complex symbols χ which depends on the specific modulation
scheme chosen.

It is well known that the optimal estimation of x in (1) is
the maximum-likelihood (ML) solution

xML = arg min
x∈χK

‖y −Hx‖2 . (2)

However the search for solution is known to be exponentially
complex, as the worst-case computational cost grows expo-
nentially in the number of inputs K and constellation size M
(see for example [2]).

A number of suboptimal algorithm have been developed
as low-complexity alternatives to the ML decoding. Among
others in recent years the sphere decoder [4], [5] has gained
considerable attention. Conventional sphere decoding [4] per-
forms well for underloaded systems, i.e. when the size of the
input vector K is less then the signal space dimension N , and

its use in overloaded or underdetermined systems, i.e. when
K > N , is not possible. In [5] a Generalized Sphere Decoding
(GSD) has been proposed to tackle the problem of optimal
decoding of underdetermined systems.

In this paper we first introduce a symbol dominance condi-
tion that generalizes to M -PSK the results in [6], [7], [8] for
BPSK and QPSK constellations. We then propose a new tree-
search algorithm, based on conditional dominance conditions,
that gives the ML optimal solution to the problem (2). The
algorithm, that we call King Decoder, presents lower compu-
tational complexity not only with respect to ML exhaustive
search, but also to similar tree-search algorithms such the
GSD [5]; it does not require any matrix inversion and/or
factorization; it can be employed in both underdetermined and
overdetermined systems.

The rest of the paper is organized as follows. In Section II
we define the discrete difference for the Euclidean distance. In
Section III we introduce the symbol dominance condition. In
Section IV we present a tree-search algorithm based on con-
ditional dominance conditions and show results of simulations
in Section V. Finally Section VI draws the conclusions.

II. DISCRETE DIFFERENCE

Geometrically the ML solution is given by the vector x that
minimizes the Euclidean distance

f (x) = (y −Hx)
H

(y −Hx) . (3)

We are interested in the difference of the Euclidean distance
between two generic points of χK .

Definition 1: Consider two generic vectors x and x̂ both
belonging to χK , we define the discrete difference ∆f (x; x̂),
as the difference f (x) − f (x̂). The kth discrete difference
along the kth coordinate ∆kf (x; x̂) is the discrete difference
∆f (x; x̂) when x and x̂ differ only by the kth component.

A necessary and sufficient condition for x to be a global
minimum for the cost function f (x) is then that all discrete
differences ∆f (x; x̂) are non positive for each x̂ ∈ χK .
The search of global minimum just by looking at the dif-
ferences does not reduce the computational complexity of the
ML search alone. The number of differences to compute is
still exponential with the number of inputs and the size of
constellation. However, as it will be clearer in the following,
we can avoid to look at all differences and still get the optimal
solution.
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In the special case of the Euclidean distance the discrete
difference along the generic kth coordinate takes on a specific
expression, as stated by the following proposition. We denote
with (·)H the conjugate-transpose operator, with (·)∗ the
conjugate operator and with hk the kth column of matrix H.

Proposition 1: For any pair of vectors x and x̂ that belong
to χK and differ only at the kth position

∆kf (x; x̂) = −2<

(xk − x̂k)
∗

hHk y −
∑
i6=k

xih
H
k hi


+
(
|xk|2 − |x̂k|2

)
hHk hk. (4)

Proof: Se appendix A.
The expression is quite general and can be used for any system
modeled by eq. (1) and for which the detection problem can be
formulated as in eq. (2). The kth discrete difference depends
on the observed vector y and on the symbols of the other
elements of the input vector x, i.e. xi, i 6= k. The sign of the
discrete difference lets us to choose between the two possible
transmit vectors x and x̂. If the discrete difference is non
positive then the vector x is closer to the observation than the
vector x̂.

In this paper we restrict our attention on M -PSK constel-
lations, i.e. χ =

{
ej[

2π
M (m−1)+θ]

}
, m = 1, . . . ,M , where θ

represents an offset that, without loss of generality, we assume
equal to π/M . Since the constellation has constant modulus,
we can simplify eq. (4) as

∆kf (x; x̂) =

− 2<

(xk − x̂k)
∗

hHk y −
∑
i6=k

xih
H
k hi

 . (5)

Eq. (5) can be further simplified for all those cases that
involve some symmetry between vectors x and x̂ in the kth
dimension. In Fig. 1 a 16-PSK with initial phase offset of π/16

is shown and each symbol has been denoted with x(i)k where
k is the vector index and i is the index in the constellation set.
There exist pairs of symbols that have the same imaginary part,
as for example

(
x
(8)
k , x

(1)
k

)
,
(
x
(7)
k , x

(2)
k

)
, etc., shown in Fig.

1. For all these pairs the discrete difference can be rewritten
as

∆kf (x; x̂) = −4 cos θk<


hHk y −

∑
i6=k

xih
H
k hi

 , (6)

where θk is the phase corresponding to the symbol xk.
Since we are interested in the sign of the discrete difference,
the above expression allows to exclude all points for which
the discrete difference is positive. For example, if for x(1)k
∆kf (x; x̂) > 0, given observation y and the other elements
of the input vector xi, then we can conclude that the symbol
x
(1)
k cannot be a valid solution for the kth component of the

ML solution. In other words, under the assumption that we
already know xi, i 6= k and given the observation y, just
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Figure 1. 16-PSK constellation for the kth component of the input vector x.
The line at angle ϕ splits the constellation set into two subsets. By looking
at the sign of the discrete difference for pair of symbols that are symmetric
with respect to the line we can select the subset which the kth component of
the optimal ML solution belongs to.

by looking at the sign of the discrete difference (6) we can
exclude half the symbols that belong to the constellations. To
see this note that

sign (cos θk) = sign

<

hHk y −

∑
i 6=k

xih
H
k hi


 . (7)

is a necessary and sufficient condition for the sign of the
discrete difference between vectors that differ in the kth
coordinate and have the same imaginary part. Therefore the
sign of the real part of the kth component of the optimal
solution is completely determined by the sign of the real part
of
[
hHk y −

∑
i6=k xih

H
k hi

]
. An analogous condition for pairs

of symbols that have the same real part is given by

sign (sin θk) =

sign

<
e−j π2

hHk y −
∑
i6=k

xih
H
k hi


 . (8)

Therefore the sign of the imaginary part of the kth component
of the optimal solution is fully determined by the sign of the
real part of the complex point rotated by −π/2.

The most general case is shown in Fig. 1 where a 16-PSK
is shown and a line that symmetrically splits the constellation
set into two subsets is also shown. The angle between the line
and the real axis is denoted by ϕ. The discrete difference for
pairs of symbols that are symmetric with respect to the line
at angle ϕ is given in the following proposition.

Proposition 2: Consider a line in the complex plane that
forms an angle ϕ with the real axis that splits symmetrically a
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M -PSK constellation into two subsets. For any pair of vectors
x and x̂, both belonging to χK , that differ only by the kth
component and symmetric with respect to the line at angle ϕ
the discrete difference is given by

∆kf (x; x̂) =

− 4 sin (θk − ϕ)<

e−j(ϕ+π
2 )

hHk y −
∑
i 6=k

xih
H
k hi

 ,

(9)

where θk is the phase of the kth component of the vector x.
Proof: See appendix B.

The general expression (9) contains also the specific expres-
sion given, for example, by eq. (6), by simply choosing ϕ = 0.
The analogous equation for pairs with same real part can be
obtained by choosing ϕ = π/2.

A necessary and sufficient condition for the sign of the
discrete difference can also be derived from eq. (9). The sign
of the discrete difference is non positive iff

sign (sin (θk − ϕ)) =

sign

<
e−j(ϕ+π

2 )

hHk y −
∑
i6=k

xih
H
k hi


 . (10)

The above equation generalizes conditions (7) and (8) and has
the following geometrical interpretation. Given an observation
y and all other input vector components xi, i 6= k, the above
equation allows to determine if the phase of kth component
of the optimal solution is in the interval (ϕ,ϕ+ π). Note that
this is equivalent to exclude one of the two subsets in which
the line at angle ϕ splits the constellation. For example, in Fig.
(1), we have that if the sign of the term on the right-hand side
of eq. (10) is positive then the kth component of the optimal
solution is in the set of symbols

{
x
(3)
k , x

(4)
k , . . . , x

(9)
k , x

(10)
k

}
.

A single condition of the type given by eq. (10) is not
in general sufficient for making an optimal decision on the
kth component of the transmitted vector x. However it can
be noted that a combination of equations of type (10) with
different angles ϕ is sufficient to make an optimal decision,
if all xi, i 6= k, are known. Therefore by using eq. (10)
the optimal decision on the kth component of the vector x
can be equivalently made by a set of properly defined binary
decisions, just by looking at signs.

III. DOMINANCE CONDITION

Eq. (9) can be used to make an optimal decision under the
assumption that the contribution due to the other components
of vector x are known. Unfortunately this is not always true
as the detection problem aims just at the estimation of this
contribution. However we can still identify cases where the
determination of the sign of the kth discrete difference can be
made regardless of the contribution of all other components
of x. A sufficient condition for the determination of the
sign of the kth discrete difference is given by the following
proposition.

Proposition 3: If the following condition is satisfied∣∣∣<{hHk ye−j(ϕ+
π
2 )
}∣∣∣ >∑

i 6=k

∣∣hHk hi
∣∣ (11)

then the sign of the corresponding kth discrete difference is
determined regardless of the contribution of all other compo-
nents of x.

Proof: See appendix C.
Inequality (11) is a dominance condition because, when it
holds the kth component of the projected received vector is
so strong that dominates all other components. Eq. (11) is a
generalization to M -PSK of the bit dominance condition that
was first introduced in [6] and then in [7], [8].

The dominance condition assumes that in eq. (11) no
symbols xi, i 6= k, are known. However, during decoding,
partial knowledge may be available. In such cases the sign of
the discrete difference depends only on the subset of xi that
are still to be decoded. A dominance condition when only a
subset W of symbols is already available, can be given.

Proposition 4: Given the set of known symbols W and a
set of unknown symbols O, if the following condition holds∣∣∣∣∣∣<

e−j(ϕ+π
2 )

hHk y −
∑

m∈W,m 6=k

xmhHk hm


∣∣∣∣∣∣ >∑

i∈O,i6=k

∣∣hHi hk
∣∣ , (12)

then the sign of the corresponding kth discrete difference is
determined regardless of the contribution of all components of
x, xi, i ∈ O.

Proof: Analogous to the proof of Prop. 3..

IV. TREE-SEARCH ALGORITHM

We consider the decoding process as a decision on a tree
with K + 1 layers, |χ| branches that departs from each non
leaf node and |χ|K leaf nodes corresponding to all possible
transmit vectors x. An exhaustive search of the optimal
solution would require to traverse the entire tree. However
if we could make decisions on possibly each node and, as
consequence, cut some node, the number of visited nodes
would be reduced.

We then associate to each node a set of conditional dom-
inance conditions given the symbols corresponding to parent
nodes. For example, for a 8-PSK constellation the set of
conditions (12) for ϕ = 0, ϕ = π/2, ϕ = π/4 and
ϕ = −π/4 can be considered at each node. Therefore a tree-
search algorithm can be formulated based on the check at
each node of the corresponding set of conditional dominance
conditions. If any conditional dominance condition is satisfied
then half constellation symbols can be excluded by the set of
possible symbols for the optimal solution. If all conditions are
satisfied then an optimal decision on the corresponding symbol
can be made and |χ| − 1 branches can be cut. At the end of
the search process we obtain only a subset of χK , among
which we have the optimal solution.
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To select the optimal solution the Euclidean distance must
be computed. In order to reduce the computational complexity
required for this last step we introduce a different equivalent
metric d (x1, . . . , xK), that has two attracting properties: part
of the metric is already computed when the dominance con-
ditions are computed; the metric is cumulative, i.e. if two
candidates on the tree have part of the path in common,
then they have a common “partial metric”, so enabling the
computation of the metrics through partial updates on the
nodes of the tree.

We rewrite eq. (2) as

xML = arg max
x∈χK

2<
{
xHHHy

}
− xHHHHx. (13)

Under the assumption of constant modulus constellation, as for
M -PSK, the above problem does not change if we add the term
xHEx, where E is a diagonal matrix whose diagonal elements
are ek = hHk hk, as xHEx =

∑K
k=1 ‖hk‖2. Therefore we

obtain

xML = arg max
x∈χK

2<
{
xHHHy

}
− xHHHHx + xHEx.

(14)
Since HHH − E is Hermitian, we can write it as the sum
L + LH , where L is the lower triangular part of HHH− E,
and obtain

xML = arg max
x∈χK

<
{

2xHHHy − xH
(
L + LH

)
x
}

(15)

= arg max
x∈χK

<
{
xH
[
HHy − Lx

]}
. (16)

The metric obtained can be expressed as

d (x1, . . . , xK) = <

{
K∑
k=1

x∗k

[
hHk y −

k−1∑
i=1

lkixi

]}
, (17)

where the term in parenthesis is already available from the
conditional dominance condition. The metric is also cumu-
lative because the inner summation is done only on already
visited nodes.

The use of the cumulative metric that we have introduced
can save computational power and allows to terminate the tree-
search as soon as no more nodes need to be visited, because
the optimal solution is just the leaf node with the best metric.

The algorithm that we propose is a generalization, and
computationally more efficient version, of the King Decoder
algorithm that has been proposed in [8], whose formulation
was restricted to real-valued models and binary constellations.
The name is King Decoder, because it is based on the
generalized symbol conditional dominance condition (12).

V. SIMULATIONS

Since the King Decoder provides the optimal solution, we
evaluate its performances in terms of average search complex-
ity, measured as the number of visited nodes, as suggested
by [9], by means of Monte-Carlo simulations. We consider
an underdetermined flat-fading multiantenna MIMO system
with N = 2 receive and K = 4 transmit antennas, 8-PSK

Figure 2. Comparison of the average number of visited nodes for King
Decoder and Generalized Sphere Decoder for a MIMO system with N =
2 receive and K = 4 transmit antennas and 8-PSK constellation. SNR is
the total average transmitted power over a symbol period over the additive
Gaussian noise power [1].

modulation with an initial offset of π/8 and a random channel
matrix with each element hij ∼ CN (0, 1) representing the
fading between transmitter j and receiver i.

We also compare our algorithm with GSD [5], as it repre-
sents an efficient version of the Sphere Decoder [4] that can
be applied to rank deficient systems. We have implemented
the GSD with a Fincke-Pohst strategy [10] and a starting
radius r2 = 7Nσ2, with a restart with increased radius if no
vectors are found within the sphere and therefore it provides
the optimal solution.

In Fig. 2 results, in terms of average number of visited
nodes versus signal-to noise ratio (SNR), show that the King
Decoder has better performances than GSD for the entire range
of SNR’s considered. It is also interesting to note that King
decoder presents an almost constant complexity. The reason is
that the impact of the channel’s structure is more pronounced
than that of the channel noise.

VI. CONCLUSIONS

In this paper we have introduced symbol dominance con-
ditions that represent sufficient conditions for making optimal
decisions in MIMO systems with M -PSK constellations. We
have also shown that conditional dominance conditions can
be used in a tree-search algorithm, that we have called King
Decoder, capable of ML decoding at reduced complexity. The
King Decoder has several advantages: the same algorithm can
be employed in both underdetermined and overdetermined
systems, in contrast to conventional sphere decoding; no
preprocessing is required as in sphere decoding, in particular
no matrix inversion and/or factorization is needed; simulation
results show that it presents lower complexity than the Gen-
eralized Sphere Decoder.
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APPENDIX A
PROOF OF PROPOSITION 1

We explicitly write the difference as:

∆kf (x; x̂) = −2<
{

(xk − x̂k)
∗
hHk y

}
+

xHHHHx− x̂HHHHx̂ (18)

The term xHHHHx − x̂HHHHx̂ is a real scalar, so we
can apply the conjugate-transpose operator with no change
to obtain

xHHHHx− x̂HHHHx̂ =

<

∑
i

∑
j

x∗ih
H
i hjxj −

∑
m

∑
n

x̂∗mhHmhnx̂n

 =

2<

(xk − x̂k)
∗

hHk y −
∑
i 6=k

xih
H
k hi


+
(
|xk|2 − |x̂k|2

)
hHk hk (19)

We can finally write the difference as stated by the proposition.

APPENDIX B
PROOF OF PROPOSITION 2

Consider the discrete difference given by eq. (5). When x̂k
is symmetric with respect to the line at angle ϕ, the difference
xk − x̂k in eq. (5) can be rewritten in terms of θk and ϕ. In
Fig. (1) pairs

(
x
(4)
k , x

(1)
k

)
and

(
x
(3)
k , x

(2)
k

)
are examples of

the kind of differences that we are considering. For all these
pairs the difference becomes

(xk − x̂k)
∗

=
(
ej(ϕ+α) − ej(ϕ−α)

)∗
(20)

= 2e−j(ϕ+
π
2 ) sinα (21)

Since we have α = θk − ϕ, we finally have the eq. (11).

APPENDIX C
PROOF OF PROPOSITION 3

The sign of the discrete difference is determined regardless
of the contribution of all other components of x whenever the
following condition holds

∣∣∣<{hHk ye−j(ϕ+
π
2 )
}∣∣∣ >

∣∣∣∣∣∣<
∑
i 6=k

xih
H
k hie

−j(ϕ+π
2 )


∣∣∣∣∣∣ .
(22)

For the triangle inequality a stronger condition is expressed
by the following inequality∣∣∣<{hHk ye−j(ϕ+

π
2 )
}∣∣∣ > ∑

i 6=k

∣∣∣<{xihHk hie
−j(ϕ+π

2 )
}∣∣∣ .

(23)

An even stronger inequality is obtained by observing that the
real part of a complex number is maximum when equals its
modulus∣∣∣<{hHk ye−j(ϕ+

π
2 )
}∣∣∣ >

∑
i6=k

∣∣∣xihHk hie
−j(ϕ+π

2 )
∣∣∣ . (24)

Under the assumption of constant modulus constellation the
above inequality can be rewritten as∣∣∣<{hHk ye−j(ϕ+

π
2 )
}∣∣∣ >∑

i 6=k

∣∣hHk hi
∣∣ . (25)

By writing explicitly the real part of the left-hand term we
finally get the sufficient condition stated by the proposition.
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